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Abstract-

ingthis paper the coupling properties of coupled dielec-
tric waveguides are evaluated using a novel and powerful

method which relies on the concept of equivalent planar

polarization dipole moments to simulate the guides. Gen-

eralized impedance boundary conditions are enforced to

provide a simple planar integral equation ( Generalized
Integral Equation). This method can account for multi-

ple dielectric strips on different levels. Phase constants

of the different modes and coupling characteristics are

calculated for several structures, such as rib waveguides
and insulated image guides.

1 INTRODUCTION

New waveguiding low-loss monolithic transmission lines

have been proposed recently for sub-millimeter wave ap-

plications [1]. They exhibit several advantages over more

conventional conducting lines such as: low ohmic losses,
electrically small size (fraction of a guided wavelength),
good guiding properties by appropriate combination of
layers, easy fabrication, and monolithic nature that al-
lows for easy construction of passive circuit elements as
well as simple integration of active devices. The theoret-
ical characterization of this new type of {lelectric struc-
tures plays an important role in the design of low-loss
circuits operating in the sub-millimeter wave region, such
as power dividers, impedance transformers and filters.

The fabrication of geometrically complex circuits on
multilayered substrates faces stringent requirements on
the spacing between elements. This in turn requires

a good understanding of various coupling mechanisms.
During the past few years, a number of papers have been

published on the characterization of edge-coupled dielec-

tric lines at millimeter-wave frequencies using the effec-
tive dielectric constant (EDC) method [2], [3], the mode-

matching technique [4], variational methods [5] and inte-

gral equation formulations [6], [7].

Figure 1: General configuration of multiple low-loss ridged waveg-
uides

The present paper shows an important extension of
the novel generalized integral equation (GIE) method
described in [8] to characterize complex geometries at
submillimeter-wave and terahertz frequencies. Multiple
dielectric strips on different levels within a multilayered
substrate environment can be analyzed with accuracy
and simplicity. With the replacement of the dielectric
strips by planar equivalent currents, the original prob-

lem is simplified and can be treated as any other two-
dimensional problem with unknown planar current den-
sities [9]. An accurate modelling of the actual coupling
bet ween multilevel lines, including the effect of dispersion
at high frequencies, is presented.

2 THEORY

We consider the dielectric structure within a shielded
metallic waveguide (Figure 1). The presence of the waveg-
uide does not affect the guiding properties of the lines
when the walls are far enough. TWO types of modes

may then propagate in the dielectric structure, namely
waveguide modes (known as surface wave modes in open
configuration) which are related to the supporting struc-
ture, and strip modes which are confined to the dielec-
tric waveguides. The first modes will always propagate

above the cut-off of the waveguide. On the other hand,
the strip mode will not exist unless the guiding layer is
above a critical tkickness and width. In thk analysis,
the width-to-thickness ratio of the strips is moderately
large. Under this assumption, the eigenvalue equation
for the propagation constant k, is derived through the
use of a modified planar integral equation employing the

1115

CH3 141-9/92/0000-1 115$01.0001992 IEEE 1992 IEEE MTT-S Digest



concept of generalized boundary conditions. Generalized or

impedance boundary conditions have been used earlier F:(%Y) = Z+(%Y) + E -(Q, Y) . (3)

for the solution of scattering problems and have pro- From equations (1) and (2) and by using Taylor’s expan-
vided novel formulations [1O]. Throughout this paper,
both conductors (ground plane and shielding waveguide)

sion for the fields inside the dielectric strips we can ex-

and dielectrics (substrates and strips) are assumed loss-
press the dipole moments per unit surface ~~ in terms of

less, but the effect of losses can be accurately modeled
the higher order derivatives of this electric field as shown

below:
[9].

The approach consists of a generalized integral for-
mulation where the electric field is derived in terms of

m
F: = (c; - %) ~~o &

equivalent electric polarization currents. Consider a mul-
tilevel structure comprising several dielectric strips (i =

, N) of permittivity ~i with nonmagnetic material
{

(-1)”:
8’

1,2,...
.=h, + G ~=_h,

1}

F;.(z, y) (4)

and with thickness hi a fraction of the wavelength in the
dielectric as shown in Figure 2a. The excita~on of an
electromagnetic field gives rise to an electric dipole mo-

Where ~~~ is the field inside the ith dielectric strip.

ment per unit volume in strip i denoted by ~ which is In the presence of t~ planar polarization surface, the
also known as the polarization vector. This electric dipole radiated electric field EP is given by the following integral:
In oment per unit volume is given by:

{

p= (q – .50)i’i , irlsi

o , elsewhere.
(1)

~P(% Y) = 5 ]L[dk’!Y/zP)Y’) 1
~P:(z,, y’)dy’ (5)

i=l P

First, we define an equivalent problem with respect
to the field outside the dielectric strips. Each strip is where G; is the dyadic green’s function on line k due to

replaced by a planar-strip polarization surface resting on line i and N is the total number of strips. As it is well

the plane z, = $ (Figure 2b) and is characterized by a known, this function can be found analytically and will

dipole moment per unit surface ~j given by:
be in the form of infinite single summations for shielded
structures and single Sommerfeld integrals for open struc-
tures.

a. (herd geometry

x
t

In order to make the above two problems equivalent

irj the volume outside the dielectric st~ps, the total field
E, has to be identical to the original E’ field on the sur-
face of the dielectric waveguides. Furthermore, using the
generalized boundary conditions on the upper and lower
surfaces of the dielectric strips, we find that the normal
derivatives of the outside electric field ii on these sur-
faces are related to the normal derivatives of the electric
field H~~ excited inside the dielectric strip by

4.

where C?is a known tensor, 72.1s a vector function involv-
ing first order x-derivatives of the x-component of the
field and

(7)

b. Equivalent geometry with dipole moments
In view of the above equations, the equivalent strip

dipole moments per unit surface can be expressed in

Figure 2: Equivalent problem of the analyzed structure
terms of the outside electric fields at the upper and lower
strip surfaces as
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which also indicates that the equivalent polarization sur-
face exhibits spatially dispersive characteristics. When
the operator L of equation (8) is applied to the origi--,,
nal E’ field, it transforms equation (5) to a homogeneous
Fredholm Integral Equation of the second kind:

which may be solved to determine the unknown equiva-
lent planar currents. Because the structure is in a shielded
environment, radiation losses are not present. However,
the procedure as described up to this point can be ap-
plied as well to open dielectric waveguide problems with
the presumption that the boundary conditions away from
the dielectric strip surf~~ are satisfied appropriately by

the Green’s functions GP . In both cases the application
of the generalized boundary conditions result in infinite
summations which can be evaluated analytically leading
to simplified kernels.

The method of moments is applied to the dipole mo-

ments ~~ to solve (9). Subsectional pulse basis functions

are chosen as expansion functions for the transverse de-

pendence of the dipole moments. Galerkin’s method is

applied to transform the integral equation into a matrix
equation whose eigenvalues are the propagation constant
of the different modes at the operating frequency.

The present study also involves the calculation of the
coupling coefficient. In the case of two symmetric cou-

pled lines, the coupling coefficient is defined according to

classical coupled mode theory [11]. For maximum cou-

pling, the coupler should be designed with a length of

(lo)

where ,6, and /30 are the phase constants of the even and
odd mode, respectively.

3 RESULTS AND DISCUSSION

A computer program was implemented to calculate
the propagation constant and coupling coefficient of mul-
tilevel lines using the approach described above. Figure

J shows the dispersion characteristics of coupled dielec-
tric lines in a horizontal (Ey) field configuration. The
dotted lines corespond to the first two waveguide modes
oft he partially-filled structure (LSE1O and LSE20, in this
example) and the solid lines to the modes of the struc-
ture with the strips present. For high frequencies, the

odd mode is actually higher than the even mode because
of the waveguide polarization in this particular example.
As the operating frequency decreases, the strips become
electrically small and the fields are no more confined to

the strips. The corresponding modes then degenerate to

a perturbation of the partially-filled waveguide modes.
A number of non-physical modes without low-frequency
cut-off were found. The pattern of these spurious modes
was easily recognizable and was dlsgarded on Figure 3
for sake of clarity (as were the many higher-order modes
propagating above 250 GHz). This type of problem is not
uncommon in the numerical solution of electromagnetic
problems, as in the case of the finite-element method [12].

In Figure 4, the phase constant of the odd and even
modes are investigated for three different types of guides

) the strip dielectric (tgvi~e <: the rib (egti;~== &b.t,~t. ,
&b~&a~e) in region 1 and the insulated image guide (cow~~e>
6.Ub~~,a~c)in region 2. Note that for ~gui~. = 1, no strip

is actually present, and the phase constant reduces to
the waveguide mode of the partially-filled structure. The

permittivity of the substrate was chosen to be 2.2 in this
example. However, in actual fabrication, III-V materi-
als must be selected for the substrate and lines due to
their adhesion properties. The phase constant is shown
(Figure 5) for two identical strip dielectric guides as a
function of separation s and compared to a single line
at the location of strip #1. The normalized propagation
constant of the odd and even modes tends to degenerate
to the single line case as the separation increases, show-
ing a decrease in the coupling between the lines. This is
due to the fact that at higher frequencies the fields tend

to concentrate in the strip regions. The normalized cou-
pling length L/h is plotted in Figure 6, where h is the
height of the dielectric guide. The higher the normalized

wavenumber of the waveguide, the higher is the coupling
length.

This work will be extended to study the effect of losses

on the performance of thin dielectric lines at high fre-

quencies. In addition, results for multilevel lines of dif-

ferent thicknesses will be presented as a function of line
separation and frequency.

4 CONCLUSIONS

Several types of shielded dielectric waveguides are an-
alyzed using the generalized integral equation method

(GIE). This method employs a dyadic Green’s function
and integral equation formulation together with higher-
order boundary conditions to study the influence of fre-
quency, material constants and geometrical dimensions
on the propagation constants of coupled dielectric strip
waveguides.
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Figure 5: The normalized phase constant as a function of strip
separation (a = 5cm, b = 2cm, WI = roz = 5mm, hl = hz = 2mnI.
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Figure 6: The normalized coupling length for total power transfer
versus strip separation

1118


